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Infinite Prandtl Number Convection
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We prove an inequality of the type N�CR1�3(1+log+ R)2�3 for the Nusselt
number N in terms of the Rayleigh number R for the equations describing three-
dimensional Rayleigh�Be� nard convection in the limit of infinite Prandtl number.
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1. INTRODUCTION

The bulk average of heat transport in Rayleigh�Be� nard convection,
the Nusselt number N, is measured in experiments and numerical simula-
tions.(1)

Under a variety of conditions it is found that

NtRq

where the Rayleigh number R is proportional to the amount of heat supplied
externally. Many experiments report values for q that belong approximately
to the interval [ 2

7 , 1
3] for large R. The mathematical description is based on

the three dimensional Bourssinesq equations for Rayleigh�Be� nard convec-
tion.(2) These are a system of equations coupling the three dimensional
Navier�Stokes equations to a heat advection-diffusion equation. The only
known rigorous upper bound for N (3) at large R is of the order R1�2; the
bound is valid for all weak solutions (the global existence of smooth solu-
tions is not known). Although one can describe sufficient conditions that
ensure bounds with lower exponents, (4) no rigorous derivation of the
exponents 2

7 or 1
3 exists, to our knowledge. These exponents have been
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discussed by several authors using physical reasoning and dimensional
analysis.(5)

In this paper five derive rigorously an upper bound of the form

N�1+C1R1�3(1+log+(R))2�3

for the three dimensional equations for Rayleigh�Be� nard convection
obtained in the limit of infinite Prandtl number. The Prandtl number is the
ratio of the fluid's viscosity to the fluid's heat conduction coefficient. These
equations are easier to analyze than the Boussinesq equations; in particular
one can prove global existence and uniqueness of smooth solutions. We
obtain bounds for higher derivatives (average Laplacian squared) of the
temperature and a pointwise logarithmic bound for the second derivative of
vertical velocity. The latter is obtained via a logarithmic L� bound for the
bi-Laplacian with homogeneous Dirichlet and Neumann boundary condi-
tions. The logarithmic 1

3 bound for the Nusselt number follows.
In previous work we have developed and applied a general variational

method(6) to estimate bulk dissipation quantities in systems in which energy
is supplied by boundary conditions. The method starts by translating the
equation in function space by a background��a time independent function
that obeys the driving boundary conditions. A quadratic form is associated
naturally to each background, and the method consists in selecting those
backgrounds for which this quadratic form is positive semi-definite and
then minimizing a certain integral of the background. In order to obtain
our present result we need to use more PDE information. The additional
information concerns higher derivatives and cannot be deduced from
stability considerations. Consequently we find that the method is substan-
tially modified: the quadratic form is no longer required to be semidefinite.
Instead, the additional information coming from the evolution equation is
incorporated in the constraints of a new mini-max procedure. This addi-
tional information is however the essential new element and the mini-max
procedure is its natural by-product.

2. EQUATIONS

We consider the infinite Prandtl number equations for Rayleigh�
Be� nard convection in the Boussinesq approximation. They are a system of
five equations for velocities (u, v, w), pressure p and temperature T in three
spatial dimensions. The velocity and pressure are determined from the tem-
perature by solving time independent equations:

&2u+ px=0 (1)
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together with

&2v+ py=0 (2)

and

&2w+ pz=RT (3)

The velocity is divergence-free

ux+vy+wz=0 (4)

The temperature is advected and diffuses according to the active scalar
equation

(�t+u } {) T=2T (5)

where u=(u, v, w). R represents the Rayleigh number. The horizontal inde-
pendent variables (x, y) belong to a basic square Q/R2 of side L. Some-
times we will drop the distinction between x and y and denote both
horizontal variables x. The vertical variable z belongs to the interval [0, 1].
The non-negative variable t represents time. The boundary conditions are as
follows: all functions ((u, v, w), p, T ) are periodic in x and y with period L;
u, v, and w vanish for z=0, 1, and the temperature obeys T=0 at z=1,
T=1 at z=0.

We take a function {(z) that satisfies {(0)=1, {(1)=0, and write
T={+%(x, y, z, t). The role of { is that of a convenient background; there
is no implied smallness of %, but of course % obeys the same homogeneous
boundary conditions as the velocity.

The equation obeyed by % is

(�t+u } {&2) %={"&w{$ (6)

where we used {$=d{�dz.
We will write

& f &2=
1

L2 |
1

0
|| | f (x, y, z)|2 dz dx dy

for the (normalized) L2 norm on the whole domain. We denote by 2D the
Laplacian with periodic-Dirichlet boundary conditions. We will denote by
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2h the Laplacian in the horizontal directions x and y. We will use ( } } } )
for long time average:

( f ) =lim sup
t � �

1
t |

t

0
f (s) ds

The Nusselt number is

N=(&{T&2)

The system has global smooth solutions for arbitrary smooth initial
data. Let us record here, without proof, a few elementary bounds:

&2w&�CR

at each instance of time. Because the temperature just advects and diffuses
we have also

0�T�1

pointwise in space and time. Also

&{u&2�CR2

holds at each instance of time. Actually

&{u&2=
R
L2 | Tw dx dy dz=

R
L2 | %w dx dy dz

so the time average is

(&{u&2)=R(N&1)

The inequality

&{%&2
L4�C &%&L� &2%&L2

is true in any dimension. From the bounds above and (6) it is not difficult
to see that there exists a positive constant C2 such that

(&2%&2)�C2 {RN+|
1

0
[({"(z))2+Rz({$(z))2] dz= (7)

holds. By Sobolev embedding it follows that averages of squares of spatial
C0, : norms of % are controlled also.
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3. THE VERTICAL VELOCITY

Because of horizontal periodicity the unknown functions can be written
as Fourier series with z-dependent coefficients, for instance

u(x, z)= :
k # Z2

uk (z) e(2?i�L)(x } k)

The equation 2Du= f decomposes in the ordinary differential equa-
tions

\ d 2

dz2&m2
k+ uk= fk

where

mk=
2?
L

|k| (8)

For m>0, the solution to

\ d 2

dz2&m2+ u= f

with zero Dirichlet boundary conditions,

u(z)=0 at z=0, 1

is given using the Green's function G(m)(z, `) by

u(z)=G(m)( f )(z)=|
1

0
G(m)(z, `) f (`) d`

The Green's function is calculated from two independent solutions of the
homogeneous ODE, with one point boundary conditions.

G(m)(x, `)=
1

W { y1(z) y2(`)
y1(`) y2(z)

if z<`
if z�`

We will take

y1(z)=
emz&e&mz

2m
, y2(z)= y1(z&1)=&y1(1&z)
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and therefore the Wronskian W= y1y$2& y$1y2 equals

W= y1(1)=
em&e&m

2m

(we use the notation y$=dy�dz). Clearly y1= y (m)
1 depends on m but we

will keep the notation light. Recall that G(m) is continuous, non-positive
G(m)(z, `)�0, symmetric G (m)(z, `)=G(m)(`, z), solves the homogeneous
ODE in z and ` separately for z{`, and the left-to-right jump across the
diagonal of the z partial derivatives equals one:

G (m)
z (z, z&0)&G (m)

z (z, z+0)=1

Also note that the Green's function is explicitly

G(m)(z, `)=
1

2m2W
(cosh(m(z+`&1))&cosh(m(1&|z&`| ))) (9)

The Green's function for the Laplacian with Dirichlet-periodic boundary
conditions is

G(x& y, z, `)= :
k # Z2

e(2?�L) ik } (x& y)G(mk)(z, `) (10)

Because of the divergence-free condition, the pressure obeys

2p=RTz

Differentiating this with respect to z and substituting, the equation for w
becomes

22w=&R2h T (11)

and consequently

\ d 2

dz2&m2
k+

2

wk=Rm2
kTk (12)

The boundary conditions are

wk(0)=w$k(0)=wk(1)=w$k(1)=0 (13)

Now we will seek the solution of

\ d 2

dz2&m2
k+

2

w= f
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by solving

w= g+h

where

g=G(m)G (m) f

and

h=
1

W 2&1
(g$(0)+Wg$(1))(1&z) y1(z)+

1
W 2&1

(Wg$(0)+ g$(1)) zy2(z)

(14)

Note that h solves the homogeneous equation

\ d 2

dz2&m2
k+

2

h=0

and that is satisfies h=0 and h$=&g$ boundary conditions. Note that

g$(0)=|
1

0
|

1

0

y2(`$)
W

G(m)(`$, `) f (`) d`$ d` (15)

and

g$(1)=|
1

0
|

1

0

y1(`$)
W

G(m)(`$, `) f (`) d`$ d` (16)

Thus the solution w can be expressed as

w(z)=|
1

0
(G(m)(z, `)+H (m)(z, `)) G(m)( f )(`) d` (17)

with

H (m)(z, `)=
1

W 2&1
[(1&z) y1(z)+Wzy2(z)]

y2(`)
W

+
1

W 2&1
[W(1&z) y1(z)+zy2(z)]

y1(`)
W

(18)
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We will consider now the operator

B=
�2

�z2 (22
DN)&1 2h

where w=(22
DN)&1 f is the solution of

22w= f

with horizontally periodic and vertically Dirichlet and Neumann boundary
conditions w=w$=0.

We will prove that B obeys logarithmic L� estimates. More precisely

Theorem 1. For any : # (0, 1) there exists a positive constant C:

such that every Ho� lder continuous function % that is horizontally periodic
and vanishes at the vertical boundaries satisfies

&B%&L��C: &%&L� (1+log+ &%&C0, :)2 (19)

The spatial C0, : norm is defined as

&%&C0, := sup
X=(x, y, z) # Q_[0, 1]

|%(X, t)|+ sup
X{Y

|%(X, t)&%(Y, t)|
|X&Y |:

We will derive this result using the calculation above; we express B%
as the sum

B%=(I&B1+B2) B1%

where

B1(%)=2h(2D)&1 %

and

B2(%)(x, z)=L&2 ||
1

0
:
k

ei(2?�L) k } (x& y) �2

�z2 H (mk)(z, `) %( y, `) dy d`

and prove for both Bj , j=1, 2 the estimates

&Bj %&L��C: &%&L� (1+log+ &%&C 0, :) (20)

These estimates are well-known for singular integral operators of the classical
Calderon�Zygmund type. In our case the operators are not translationally
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invariant and their kernels are not explicit. We will consider first the
operator B1 . B1 is an integral operator with kernel K=2hG

K(x& y, z, `)=& :
k # Z2

e(2?�L) ik } (x& y)m2
kG(mk)(z, `) (21)

The operator is given by

B1(%)(x, z)=L&2 |
Q
|

1

0
K(x& y, z, `)(%( y, `)&%(x, z)) dy d` (22)

Now we claim that there exists a constant such that

|K(x& y, z, `)|�C( |x& y|2+|z&`|2)&3�2 (23)

Notice that the estimate (20) follows immediately from (23). The proof of
(23) is done using the explicit representation of the Green's function G(mk),
the Poisson summation formula and the Poisson kernel. Note first that
from the explicit form (9) it follows that

0�&m2
k G(mk)(z, `)�Cmke&mk |z&`|

If we ignore the horizontal oscillatory sum we obtain a pointwise bound
that diverges like |z&`|&3; this is not sufficient for our purposes. In order
to use the cancellations in the oscillatory sum we need to sum for instance

I=:
k

e(2?�L) ik } (x& y)mk
cosh(mk(1&|z&`| ))

sinh(mk)

We express

cosh(mk(1&|z&`| ))
sinh(mk)

=e&mk |z&`|+ek

with

0�ek�2e&mk

The contribution coming from the sum of ek is not singular and is incor-
porated in the prefactor. Below we will use the Poisson summation formula
to obtain pointwise inequalities for exponential-oscillatory sums of the type

:
k # Z2

e(2?�L) ik } (x& y)ck e&=mk
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where ===(z, `) is nonnegative and ck grows at most algebraically in |k|.
The sums are singular where = vanishes, typically at z=` or z, `=0, 1.
These are co-dimension one surfaces and the Poisson summation formula
allows one to replace these singular surfaces with single points (e.g., x= y,
z=`). The Poisson summation formula is(7)

:
j # Z2

P(x+Lj)=L&2 :
k # Z2

P� \2?
L

k+ e(2?�L) ix } k

where the Fourier transform is

P� (!)=|
R2

e&i! } xP(x) dx

it follows that

:
k

e(2?�L) ik } (x& y)mk e&mk |z&`|=&L2 :
j

[P$(x& y+Lj, |z&`| )]

where P(x& y, =) is the Poisson kernel in 2 dimensions

P(x& y, =)=c2=( |x& y|2+=2)&3�2

which is the inverse of Fournier transform of e&= |!|,

e&= |!|=|
R2

e&i! } xP(x, =) dx

and

P$(x, =)=
�P(x, =)

�=

The estimate (23) for I follows directly by evaluating the derivative P$ and
noting that only a few terms ( | j |�2 for x, y # Q) in the sum in the right
hand side of the Poisson summation formula are significant. There is a
second term in the kernel; its estimate is similar.

The operator B2 has also a kernel

H"(x& y, z, `)=:
k

ei(2?�L) k } (x& y) �2

�z2 H (mk)(z, `)
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We will decompose the kernel in two parts, corresponding to the upper
and lower boundaries:

�2

�z2 H (mk)(z, `)=S (mk)(z, `)+J (mk)(z, `)

where

J (mk)(z, `)=
1

W 2&1
[W(1&z) y1(z)+zy2(z)]"

y1(`)
W

and

S (mk)(z, `)=
1

W 2&1
[(1&z) y1(z)+Wzy2(z)]"

y2(`)
W

We form the corresponding kernels

J(x& y, z, `)=:
k

e i(2?�L) k } (x& y)J (mk)(z, `)

and

S(x& y, z, `)=:
k

e i(2?�L) k } (x& y)S (mk)(z, `)

The operator B2 can be written as B2=S+J where

Jf (x, z)=L&2 |
Q
|

1

0
J(x& y, z, `)( f ( y, `)& f ( y, 1)) dy d`

and

Sf (x, z)=L&2 |
Q
|

1

0
S(x& y, z, `)( f ( y, `)& f ( y, 0)) dy d`

for any continuous function f that obeys the homogeneous boundary con-
ditions (so that f ( y, 0)= f ( y, 1)=0). Now the calculation of the individual
kernels is again done using the Poisson summation formula. A typical
term, arising in J is

:
k

ei(2?�L) k } (x& y)m2
k(1&z)

(cosh(mk(z+`))&cosh(mk(z&`)))
(sinh mk)2
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The main contribution comes from the first term:

I=:
k

ei(2?�L) k } (x& y)m2
k(1&z) cosh(mk(z+`&2))

After Poisson summation we obtain

I=C(1&z) L2 :
j

(2h P(x& y+ jL, 2&z&`))

and the fact that 0�1&z�2&z&` is used to deduce

I�C( |x& y|2+|2&z&`|2)&3�2�C( |x& y| 2+|1&`|2)&3�2

This term is the leading order term in the evaluation of J; we obtain

|J(x& y, z, `)|�C( |x& y|2+|1&`|2)&3�2 (24)

Similarly,

|S(x& y, z, `)|�C( |x& y|2+|`| 2)&3�2 (25)

The estimate (20) for B2=J+S follows from (24) and (25).

4. HEAT FLUX

The object of interest here is the function b(z, t) defined by

b(z, t)=
1

L2 |
Q

w( } , z) T ( } , z) dx

Its average is related to the Nusselt number:

N&1=�|
1

0
b(z) dz�

From the equation (6) it follows that

N+(&{%&2) =2 �|
1

0
&{$(z) b(z) dz�+|

1

0
({$(z))2 (26)

Let us write now

b(z, t)=
1

L2 |
Q
|

z

0
|

z1

0
wzz(x, z2 , t) %(x, z) dx dz dz2 dz1
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It follows that

|b(z, t)|�z2(1+&{&L�) &wzz&L�(dz; L1(dx)) (27)

Applying the logarithmic bound

&wzz&L��CR(1+&{&L�)[1+log+(R &2%&)]2

and using it together with (7) in (27) we obtain from (26)

N�|
1

0
({$(z))2 dz+CR(1+&{&L�)2 _|

1

0
z2 |{$| dz&

__1+log+ {RN+|
1

0
[({"(z))2+Rz({$(z))2] dz=& (28)

Choosing { to be a smooth approximation of {(z)=(1&z)�$ for
0�z�$ and {=0 for z�$ and optimizing in $ we obtain

Theorem 2. There exists a constant C0 such that the Nusselt number
for the infinite Prandtl number equation is bounded by

N�N0(R)

where

N0(R)=1+C0 R1�3(1+log+R)2�3

In fact we proved also

Theorem 3. The Nusselt number for the infinite Prandtl number
equation is bounded by the constrained mini-max procedure

N�inf
{

sup
% # C{

{&(&{%&2) +2 �|
1

0
&{$(z) b(z) dz�+|

1

0
({$(z))2=

where C{ is the set of smooth, time dependent functions % that obey peri-
odic-homogeneous Dirichlet boundary conditions and the inequality

(&2%&2)�C2 {RN0(R)+|
1

0
[{"(z))2+Rz({$(z))2] dz=

The functions b(z, t) are computed via

b(z, t)=
1

L2 ||
Q

w(x, y, z, t) %(x, y, z, t) dx dy
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and the functions w(x, y, z, t) are computed by solving

22w=&R2h %

with periodic-homogeneous Dirichlet and Neumann boundary conditions.
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